
Tradeoffs in XML Database
Compression

James Cheney

Database Seminar

March 20, 2006

Tradeoffs in XML Database Compression – p.1/27



XML Compression

XML (presented as text) is generally verbose

XML representation of most data typically larger than
equivalent “custom” formats

Often, gzip or bzip2 used to compress XML text
However, may miss XML-specific compression
opportunities
Also, have to uncompress and then parse XML text
to SAX events/DOM tree

Goal: Faster, better, or cheaper XML compression

Tradeoffs in XML Database Compression – p.2/27



Prior work

XMill (Liefke, Suciu 2000): first (serious) XML
compression work

containerize/vectorize XML document, then
compress with gzip/bzip2

XMLPPM (C. 2001): uses statistical modeling, better
compression but slower

SCMPPM (Adiego, de la Fuente, Navarro DCC 2004),
XAust (Hariharan, Shankar 2005): use different
statistical models, reports improvement over XMLPPM

Vectorized XML (BGK2003), Bplex (Busatto, Lohrey,
Maneth 2005): in-memory compression of XML
document trees; not used for compressing whole file to
disk

Tradeoffs in XML Database Compression – p.3/27



Prior work

XMill (Liefke, Suciu 2000): first (serious) XML
compression work

containerize/vectorize XML document, then
compress with gzip/bzip2

XMLPPM (C. 2001): uses statistical modeling, better
compression but slower

SCMPPM (Adiego, de la Fuente, Navarro DCC 2004),
XAust (Hariharan, Shankar 2005): use different
statistical models, reports improvement over XMLPPM

Vectorized XML (BGK2003), Bplex (Busatto, Lohrey,
Maneth 2005): in-memory compression of XML
document trees; not used for compressing whole file to
disk

Tradeoffs in XML Database Compression – p.4/27



Origin of this work

After reading about the above, I wanted to see how the
new models obtained better compression.

I implemented equivalent models and played with the
other authors’ source code but found that they did not
compress as well for my data

This talk:
Describe the different approaches,
explain why existing experimental comparisons are
incomplete,
and present experiments that explain the
discrepancies (and should help direct future work)

Tradeoffs in XML Database Compression – p.5/27



Statistical models

Statistical text compression: compresses text by
building a model that predicts next symbol

Adaptive approach: interleave model building and
prediction/compression. Requires only one pass over
data, but has to “learn” model as it goes

a c a d a b ara b r

P(a) = .45
P(b) = .225
P(r) = .225
P(X) = 0.1

Model

001011101010010111

Tradeoffs in XML Database Compression – p.6/27



Statistical models

Statistical text compression: compresses text by
building a model that predicts next symbol

Adaptive approach: interleave model building and
prediction/compression. Requires only one pass over
data, but has to “learn” model as it goes

a c a d a b ara b r

P(a) = .45
P(b) = .225
P(r) = .225
P(X) = 0.1

Model

00101110101001011110110

Tradeoffs in XML Database Compression – p.7/27



Statistical models

Statistical text compression: compresses text by
building a model that predicts next symbol

Adaptive approach: interleave model building and
prediction/compression. Requires only one pass over
data, but has to “learn” model as it goes

a c a d a b ara b r

P(a) = .38
P(b) = .19
P(r) = .19
P(c) = .19
P(X) = 0.05

Model

00101110101001011110110

Tradeoffs in XML Database Compression – p.8/27



Statistical XML compression

Note: Most of the “interesting” content of most XML
documents is unstructured text

gzip xmlppm

file struct total %struct struct total %struct

DBLP 9.9MB 52.4MB 19% 667KB 33.4MB 2.0%

Medline 2.7MB 20.2MB 14% 539KB 13.7MB 3.9%

XMark 4.1MB 38.1MB 11% 287KB 27.6MB 1.0%

PSD 13.6MB 108MB 12% 2.5MB 79.6MB 3.1%

Existing techniques already compress structure well
(less than 1–20% of document)

So, in this work, I focused only on
modeling/compression of unstructured text in XML

Compressing the structure is treated as a small fixed
cost

Tradeoffs in XML Database Compression – p.9/27



XML compression strategy

Statistical approach to XML compression: Mostly use
statistical text compression, but “leverage” hierarchical
structure somehow

XMill used a similar idea, but reorganized XML text to
make it easier for gzip to compress.

XMill

a
a a

a

b c b b c b c

1
2
3

x
y
z

3
4
5

5
4
7

6
5
4

a
b
c

q
w
e

a
a a a

b c b b c b c

*/b */c

xyz
abc
qwe

123
345
547
654

doc doc

Tradeoffs in XML Database Compression – p.10/27



Approach #1: Multi-model

Idea: Switch between n models, one model M(e) per
element name e

Use M(e) to encode the text immediately under e

M(book) "\n " " " "\n"

M(title) "Gone..."

M(author) "Marg..."

M(chapter) "..."

Used in SCMPPM, XAust

I’ll call this the Structured Contexts Model (SCM)
approach

Tradeoffs in XML Database Compression – p.11/27



Approach #2: Single-model

Idea: Use a single model for text, but “prime” models
with element symbols

Priming symbols are “free” since can be inferred from
tree context (this is part of the fixed cost we’re ignoring)
(00) "\n " (01) "Gone..." (00) " " (02) "Marg..." (00) "\n"

where (00), (01) etc are priming symbols for various
element tags

Used in XMLPPM, so I’ll call it the XMLPPM approach

Tradeoffs in XML Database Compression – p.12/27



Prior experiments

XMLPPM: wide variety of XML documents, max size
<1MB, used 1MB memory for statistical models

When limit reached, statistical model restarts

SCMPPM: used large TREC documents with 8
elements, very little structure; statistical models used
1MB each (maximum of 8MB for TREC)

XAust: used large documents such as DBLP; no
memory upper limit

Tradeoffs in XML Database Compression – p.13/27



Flaws in prior experiments

XMLPPM: didn’t consider large documents, memory
variation

SCMPPM, XAust: didn’t consider small documents,
memory variation

Can’t tell whether reported compression gain is due
to using more memory or more accurate modeling
SCM approach may allocate much more memory
than it ever uses
SCM approach may eventually attain much better
compression, but may converge very slowly
(benefiting only large files)

Not enough data to draw any conclusions about relative
merits of these approaches

Tradeoffs in XML Database Compression – p.14/27



Experimental methodology

Three “experiments”:
1. Memory vs. compression rate: for a wide range of

model sizes, measured compression rate vs.
memory used

2. Memory footprint: for a wide range of model sizes,
measured memory allocated vs. memory used

3. Convergence rate: compressed prefixes of large
files, and measured prefix length vs. compression
rate

Note: Measured “real” memory use by OS-reported
RSS size.

Imperfect, but measuring exact memory use is
difficult; approximate OS-view measurements
probably good enough

Tradeoffs in XML Database Compression – p.15/27



Experiments

Used two large “typical” data sets:
DBLP (bibliography, 300MB uncompressed)
PSD (protein sequence database, 717MB
uncompressed).

Model size ranges: 4KB–32MB for SCM, 4KB–256MB
for XMLPPM.

Note: for model sizes > 32MB, SCM runs out of
memory

Prefix ranges: 10, 20, 50, 100, 200, 500, ... size of
document

Experiment machine: Athlon 3000+ (1.8Ghz), 512MB,
FC3

Tradeoffs in XML Database Compression – p.16/27



Memory use vs. compression rate

0.5

0.6

0.7

0.8

0.9

1

1 10 100

B
it

ra
te

(b
pc

)

Memory used (MB)

DBLP

xmlppm
scm

Tradeoffs in XML Database Compression – p.17/27



Memory use vs. compression rate

0.7

0.8

0.9

1

1.1

1.2

1 10 100

B
it

ra
te

(b
pc

)

Memory used (MB)

PSD

xmlppm
scm

Tradeoffs in XML Database Compression – p.18/27



Memory use vs. compression rate

For DBLP, improvement for SCM is minor (5%), needs
over 40MB to achieve this.

For PSD, SCM can perform around 10% better,
improves after 10MB.

Why?
separate SCM models initially have a lot of
redundant information so need more memory to get
same compression as XMLPPM
But eventually, models specialize and compression
benefits outweigh memory cost of overlap

Interestingly, both approaches tend to “overfit” for PSD
when large amounts of memory available

More memory doesn’t always help!

Tradeoffs in XML Database Compression – p.19/27



Memory utilization

20

40

60

80

100

120

1 10 100 1000

M
em

or
y

us
ed

(M
B

)

Memory allocated (MB)

DBLP

xmlppm
scm

100%

Tradeoffs in XML Database Compression – p.20/27



Memory utilization

50

100

150

200

250

300

350

1 10 100 1000

M
em

or
y

us
ed

(M
B

)

Memory allocated (MB)

PSD

xmlppm
scm

100%

Tradeoffs in XML Database Compression – p.21/27



Memory utilization

For both, SCM has 20-30% utilization, while XMLPPM
has near 100% (until allocation exceeds requirements)

This means that most of the models in SCM never
get “full”
All of the text is concentrated in around 25% of the
models

Interesting, but may not matter since modern operating
systems allocate pages lazily

as long as the program doesn’t try to allocate more
memory than the machine actually has

this is why SCM fails for model size > 32MB

Tradeoffs in XML Database Compression – p.22/27



Convergence rate

0.5

1

1.5

2

2.5

3

1000 1e+06 1e+09

B
it

ra
te

(b
pc

)

Input size (bytes)

DBLP

xmlppm
scm

Tradeoffs in XML Database Compression – p.23/27



Convergence rate

0.5

1

1.5

2

2.5

3

3.5

1000 1e+06 1e+09

B
it

ra
te

(b
pc

)

Input size (bytes)

PSD

xmlppm
scm

Tradeoffs in XML Database Compression – p.24/27



Convergence rate

Overall trend: SCM performs worse for small files, but
eventually wins out

Why?
because SCM separates text under different
elements, each model learns any common text
separately
but because XMLPPM lumps all text into a single
model, eventually it does worse because of
averaging

Crossover point is at around 500KB–2MB
Most Web/network applications of XML are way
smaller
Most XML representations of DBs are way larger

Tradeoffs in XML Database Compression – p.25/27



Conclusions

The SCM approach does provide better compression...

provided you give it lots of memory and lots of data
Of course, for “archiving” XML DBs (DBLP, PSD,
etc), this is fine!

However, the XMLPPM approach is better for small
documents or using small amounts of memory

This may make it preferable for on-the-fly
compression of XML “messages” or fragments of
XML within a DB
webpages, RDF, RSS feeds, SOAP RPCs
Or low-memory devices such as PDAs, mobile
phones

Tradeoffs in XML Database Compression – p.26/27



Meta-conclusions

XML compression research is still pretty open area

However, so far experiments have focused on
compression rate and ignored other costs

In this work, we investigated tradeoffs between memory
use and compression rate

Data suggests several interesting directions
Can a single model provide good compression for
both small and large documents?
Can a single model provide good compression for
both low and high memory?

Tradeoffs in XML Database Compression – p.27/27


	XML Compression
	Prior work
	Prior work
	Origin of this work
	Statistical models
	Statistical models
	Statistical models
	Statistical XML compression
	XML compression strategy
	Approach #1: Multi-model
	Approach #2: Single-model
	Prior experiments
	Flaws in prior experiments
	Experimental methodology
	Experiments
	Memory use vs. compression rate
	Memory use vs. compression rate
	Memory use vs. compression rate
	Memory utilization
	Memory utilization
	Memory utilization
	Convergence rate
	Convergence rate
	Convergence rate
	Conclusions
	Meta-conclusions

