
Logic Programming with Names and
Binding

James Cheney

Logic & Semantics Seminar

May 6, 2005

1

Prologue

2

Brief history

• History: My involvement in this work started at Cambridge

almost exactly 2 years and one dissertation ago.

• Thanks!

3

αProlog

• αProlog is a logic programming language based on Pitts’

nominal logic

• and using Urban, Pitts, and Gabbay’s nominal unification

algorithm

• FreshML : ML :: αProlog : Prolog (+ types)

• I am going to assume that the audience already has some

familiarity with all of the above.

4

Examples (I)

• A (very tired) example: typechecking.

x : T ∈ Γ
Γ ` x : T

Γ ` e : T → U Γ ` f : T
Γ ` e f : U

(x 6∈ Γ) Γ, x : T ` e : U
Γ ` λx.e : T → U

tc(G,var(X),T) :- mem((X,T),G).

tc(G,app(E,F),U) :- tc(G,E,arr(T,U)), tc(G,F,T).

tc(G,lam(x\E),arr(T,U)) :- x # G, tc([(x,T)|G],E,U).

5

Examples (II)

• A less trivial example: big step semantics for λref .

(a ∈ Lab)
〈M, a〉 → 〈M, a〉

〈M, e1〉 → 〈M ′, a〉 〈M ′, e2〉 → 〈M ′′, v〉
〈M, e1 := e2〉 → 〈M ′′[a := v], ()〉

〈M, e〉 → 〈M ′, a〉
〈M, !e〉 → 〈M ′, M ′(a)〉

〈M, e〉 → 〈M ′, v〉 (a 6∈ dom(M ′))
〈M, ref e〉 → 〈M ′[a := v], a〉

• Interesting part: last rule requires some/any fresh label for

new memory cell

6

Examples (II)

• A less trivial example: big step semantics for λref .

(M,lab(A)) ‘eval‘ (M,lab(A)).
(M,assign(E1,E2)) ‘eval‘ (M3,unit) :- (M,E1) ‘eval‘ (M1,lab(A)),

(M1, E2) ‘eval‘ (M2,V),
update((A,V),M2,M3).

(M,deref(E)) ‘eval‘ (M’,V) :- (M,E) ‘eval‘ (M’,lab(A)),
mem((A,V),M’).

(M,ref(E)) ‘eval‘ ([(a,V)|M1],lab(a)) :- (M,E) ‘eval‘ ,(M1,V),
a#M1.

• Interesting part: last rule constrains N-quantified name to be

sufficiently fresh

7

Examples (III)

• Another example: closure conversion

C[[x,Γ ` x]]e = π1(e)

C[[y,Γ ` x]]e = C[[Γ ` x]](π2(e)) (x 6= y)

C[[Γ ` t1t2]]e = let c = C[[Γ ` t1]]e

in (π1(c)) 〈C[[Γ ` t2]]e, π2(c)〉
C[[Γ ` λx.t]]e = 〈λy.C[[x,Γ ` t]]y, e〉 (x, y /∈ Γ)

8

Examples (III)

• Another example: closure conversion

cconv([x|G],var(x),E) = pi1(E).
cconv([y|G],var(x),E) = cconv(G,var(x),pi2(E)).
cconv(G,app(T1,T2),E)

= let(cconv(G,T1,E),c\
app(pi1(var(c)),

pair(cconv(G,T2,E),pi2(var(c))))).
cconv(G,lam(x\T),E)

= pair(lam(y\cconv([x|G],T,var(y))),E)
:- x#G,y#G.

• Note: Functions are unwound to relations in αProlog.

9

Nominal logic programming

10

Notation

a, b ∈ A Atoms/Names

f, g ∈ FnSym Term symbols

X, Y ∈ V ar Variables

a, b, t, u ::= 〈〉 | 〈t, u〉 | f(t) | X First-order terms

| 〈a〉t | Π · t | a Nominal terms

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P Permutations

C ::= t ≈ u | a # t Equality, freshness

Note that this includes permutation terms & variables which are

not present in nominal logic proper.

11

Ground swapping

The result of applying a (ground) permutation Π to a (ground)
term is:

Π · a = Π(a)
Π · 〈〉 = 〈〉

Π · 〈t, u〉 = 〈Π · t,Π · u〉
Π · f(t) = f(Π · t)
Π · 〈b〉t = 〈Π · b〉Π · t

where

id(a) = a
Π ◦Π′(a) = Π(Π′(a))

(a b)(c) =


b (a = c)
a (b = c)
c (a 6= c 6= b)

12

Ground freshness theory

(a 6= b)
a # b Different names fresh

a # 〈〉 Anything fresh for unit

a # t
a # f(t) Freshness ignores function symbols

a # t a # u
a # 〈t, u〉 Freshness ignores pairs

a # 〈a〉t Fresh if bound

(a 6= b) a # t
a # 〈b〉t Fresh if fresh for body

13

Ground equational theory

a ≈ a

〈〉 ≈ 〈〉
t1 ≈ u1 t2 ≈ u2
〈t1, t2〉 ≈ 〈u1, u2〉

t ≈ u
f(t) ≈ f(u)

t ≈ u
〈a〉t ≈ 〈a〉u


Standard equational rules

(a 6= b) a # u t ≈ (a b) · u
〈a〉t ≈ 〈b〉u α-equivalence for abstractions

14

Nominal Horn clauses

A (nominal) Horn clause is a formula of the form

A :− B1, . . . , Bn

where A, B1, . . . , Bn are atomic formulas.

We interpret such a clause as the nominal logic formula

N~a.∀ ~X.B1 ∧ · · · ∧Bn ⊃ A

where ~a = FN(A, ~B) and ~X = FV (A, ~B).

15

Proof search

Proof search in αProlog is depth-first backchaining just like in
Prolog, except:

1. Both variables and atoms (names) are freshened when re-
solving against a clause.

2. UPG’s nominal unification algorithm is used instead of ordi-
nary syntactic unification.

3. In addition to substitutions, answers can contain freshness
constraints.

16

Proof search: Correctness?

αProlog proof search is sound with respect
to nominal logic:

answers found by αProlog are logical consequences of the corre-

sponding theory

The big question: Is αProlog proof search
complete?

can αProlog find all answers (at least in principle)?

17

No.

18

Counterexample

Program clauses:

Na.p(a)

Goal:

p(a)

Proof search fails because we freshen a in program clause p(a),

so that the nominal unification step

p(a′) ≈ p(a)

fails: logically equivalent but not equal nominal terms

19

The fly in the ointment

20

Problem: Equivariance

• In nominal logic, truth is preserved by name-swapping

• Two atomic formulas (or rewrite rules) can be logically equiv-

alent but not equal as nominal terms.

• Example:

p(a) ⇐⇒ p((a b) · a) ≈ p(b) but p(a) 6≈ p(b)

• For complete proof search need to unify modulo equivariance

21

Two reasonable reactions

• The hacker: Grr! Interesting problems! Must solve!

– Unfortunately, full nominal and equivariant unification are

NP-hard and algorithmically nontrivial. (I found this out

the hard way.)

• The theorist: Bleh! Hard problems! Must avoid!

– Unfortunately, some interesting programs require equiv-

ariance.

22

Why is this hard?

• Let’s take a little quiz.

• Satisfiable or not?

p((c b) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

No!

• Satisfiable or not?

p((d c) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

Yes: X = c, Y = a, permutation (a d)(b c)

Nine cases to check

23

Why is this hard?

• Let’s take a little quiz.

• Satisfiable or not?

p((c b) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

No!

• Satisfiable or not?

p((d c) · X, X, (b a) · Y, Y) ⇐⇒ p(a, b, c, d)

Yes: X = c, Y = a, swap (a d)(b c)

Nine cases to check

24

Another fun example

• Is this satisfiable?

X # (((X Y) · (X Y) · X (X Y) · (X Y) · X) · X (X X) · Y) · Y

25

Another fun example

• Is this satisfiable? No

X # (((X Y) · (X Y) · X (X Y) · (X Y) · X) · X (X X) · Y) · Y

((X X) · X (X X) · Y) · Y

(X Y) · Y

X

26

Avoiding equivariance

27

The idea

• Interpret equivariance prescriptively

• Everything will be fine as long as all the programs we write

are naturally equivariant.

• Of course, checking this in general is undecidable (Rice’s

Theorem).

• Plan: find syntactic restriction of clauses for which αProlog

proof search is complete.

28

Obvious but doesn’t work

• Obviously, if the atomic formulas in our programs never have

free names then we’re safe.

• Nope: program clause

p(〈a〉X, X).

has solution p(〈a〉a, b) but αProlog doesn’t find this answer.

• Unsurprisingly, interaction between variables, names, and bind-

ing is subtle.

29

Short-cut

• Urban and I spent ages beating heads against walls on this
so you don’t have to.

• A restricted nominal Horn clause is of the form

∀ ~X.A :− N~a.∃~Y .B1, . . . , Bn

• RNHC’s are inherently equivariant (induction on derivations),
so αProlog proof search is complete.

N~a.∃~Y .G(~t)
p(~t) =⇒

N~a.∃~Y .G((b b′) · ~t)
p((b b′) · ~t)

30

Examples

• The λ-typing rule can be rewritten as

tc(G, lam(F), arr(T, U)) :− Na.F ≈ 〈a〉E, tc([(a, T)|G], E, U).

This is equivalent (in spirit) to the original.

So tc is safe.

• On the other hand, p(〈a〉X, X) has no RNHC equivalent.

• Neither (without major surgery) does the second clause of
cconv:

cconv([y|G], var(x), E) = cconv(G, var(x), pi2(E)).

31

We need equivariant unification anyway.

• Urban and I developed a test for checking whether ordinary

NHC’s are safe. It is based on equivariant unification.

• Also, evidently equivariant unification is required for some

interesting programs anyway.

• Hacker: Grr!

32

Equivariant unification

33

Idea

• Equivariant unification: relax ground name restrictions of

UPG, add permutation variables & inverses

a, b, t, u ::= 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | X | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P

C ::= t ≈ u | a # t

• t and u unify “up to a permutation” if P · t ≈ u is satisfiable.

• NP-hard [C 04]

34

Our approach

• Phase I: Get rid of term symbols (unit, pair, functions, ab-

stractions)

• Phase II: Get rid of permutation operations (id, inverse, com-

position, swapping)

• This leaves problems of the form P · a ≈ b, a # b only.

• Phase III: Solve remaining problems using permutation graphs

35

Our approach (I)

• First, get rid of unit, pair, function symbols and abstractions:

a, b, t, u ::= 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | X | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P

C ::= t ≈ u | a # t

36

Our approach (I)

• Reduction rules for equality in phase I:

(≈?1) S, 〈〉 ≈? 〈〉 →1 S
(≈?×) S, 〈t1, t2〉 ≈? 〈u1, u2〉 →1 S, t1 ≈? u1, t2 ≈? u2
(≈?f) S, f(t) ≈? f(u) →1 S, t ≈? u

(≈?abs) S, 〈a〉t ≈? 〈b〉u →1

{
S, a ≈? b, t ≈? u

∨ S, a #? u, t ≈? (a b) · u

}
(≈?var) S,Π · X ≈? t →1 S[X := Π−1 · t], X ≈? Π−1 · t

(where X 6∈ FV (t), X ∈ FV (S))

• Note the 2-way choice point in rule for abstraction

• Otherwise, rules similar to UPG algorithm

37

Our approach (I)

• Reduction rules for freshness in phase I:

(#?1) S, a #? 〈〉 →1 S
(#?×) S, a #? 〈u1, u2〉 →1 S, a #? u1, a #? u2
(#?f) S, a #? f(u) →1 S, a #? u

(#?abs) S, a #? 〈b〉u →1

{
S, a ≈? b
∨ S, a #? u

}

• Note the 2-way choice point in rule for abstraction

• Otherwise, rules similar to UPG algorithm

38

Our approach (II)

• Next, get rid of complex permutation terms:

a, b, t, u ::= 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | X | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P

C ::= t ≈ u | a # t

39

Our approach (II)

• Reduction rules, phase II:

(id) S[id · v] →2 S[v]
(inv) S[Π−1 · v] →2 ∃X.S[X],Π · X ≈ v
(comp) S[Π ◦Π′ · v] →2 ∃X.S[Π · X],Π′ · v ≈ X)

(swap) S[(a a′) · v] →2


S[a], a′ ≈ v
∨ S[a′], a ≈ v

∨ ∃X.S[X], v ≈ X, a # X, a′ # X


• Note the 3-way choice point in rule for swapping

40

Our approach (III)

• The remaining constraints involve only names, variables, and
permutation variables.

a, b, t, u ::= 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | X | Π · t | a

Π ::= (a b) | id | Π ◦Π′ | Π−1 | P

C ::= t ≈ u | a # t

• Problems of this form can be solved by graph reduction in
poly. time.

• Idea: Build a graph with “freshness”, and “permutation”
edges; reduce using permutation laws

41

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

P P
P

Q

P

42

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

P P
P

Q

P

43

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

PQP

44

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

PQP

45

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

46

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

Q

P

P

P

47

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

P

P

Q

48

An example

• Here’s how to reduce a permutation graph corresponding to:

QPP a ≈ b PQP a ≈ b PP a ≈ b PQP−1a # a

Pa b

Q

P

P

Q

• Unsatisfiable because Qa # a and Qa ≈ a

49

Results

• Phase I (term reduction): NP time, finitary (possible im-

provement to poly. time, unitary.)

• Phase II (permutation reduction): NP time, finitary

• Phase III (graph reduction): P time, unitary.

• Overall: NP time, finitely many answers.

50

Aside: Equivariant matching

• Recall that nondeterminism comes from abstractions and

swappings only.

• Based on this observation, developed a PTIME case of equiv-

ariant matching

• Solves P · t ≈ u when t, u are “swapping-free”, that is, of the

form

t, u ::= X | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t | a

and u is ground.

51

Future work

• Where do we go from here?

• The hacker: Grr! Time for some hacking!

• The theorist: Is there a better-behaved fragment of nominal

logic? (e.g., programs with no name variables)

52

Conclusion

• Nominal logic: interesting, powerful, but tricky to automate.

• Nominal logic programming is a first step in this direction

• Future: Nominal logic in theorem proving? Nominal logical

framework?

• Lots of interesting stuff to do!

53

Determinizing phase I

• Idea: Replace rules of the form

(≈?abs) S, 〈a〉t ≈? 〈b〉u →1

{
S, a ≈? b, t ≈? u

∨ S, a #? u, t ≈? (a b) · u

}

(#?abs) S, a #? 〈b〉u →1

{
S, a ≈? b
∨ S, a #? u

}

• with deterministic rules

(≈?abs) 〈a〉t ≈? 〈b〉u →1 Nc.(a c) · t ≈? (b c) · u
(#?abs) a #? 〈b〉u →1 Nc.a #? (b c) · u

• Problem: more swappings so maybe more nondeterminism
later

54

