Logic Programming with Names and Binding

James Cheney

Logic & Semantics Seminar

May 6, 2005

Prologue

Brief history

• History: My involvement in this work started at Cambridge almost exactly 2 years and one dissertation ago.

• Thanks!

α Prolog

- ullet α Prolog is a logic programming language based on Pitts' nominal logic
- and using Urban, Pitts, and Gabbay's nominal unification algorithm
- FreshML : ML :: α Prolog : Prolog (+ types)
- I am going to assume that the audience already has some familiarity with all of the above.

Examples (I)

• A (very tired) example: typechecking.

```
 \begin{array}{lll} tc(G,var(X),T) & := mem((X,T),G). \\ tc(G,app(E,F),U) & := tc(G,E,arr(T,U)), \ tc(G,F,T). \\ tc(G,lam(x\setminus E),arr(T,U)) & := x \# G, \ tc([(x,T)\mid G],E,U). \end{array}
```

Examples (II)

ullet A less trivial example: big step semantics for λ_{ref} .

$$\frac{(a \in Lab)}{\langle M, a \rangle \to \langle M, a \rangle} \qquad \frac{\langle M, e_1 \rangle \to \langle M', a \rangle \quad \langle M', e_2 \rangle \to \langle M'', v \rangle}{\langle M, e_1 := e_2 \rangle \to \langle M''[a := v], () \rangle}$$

$$\frac{\langle M, e \rangle \to \langle M', a \rangle}{\langle M, !e \rangle \to \langle M', M'(a) \rangle} \qquad \frac{\langle M, e \rangle \to \langle M', v \rangle \quad (a \not\in dom(M'))}{\langle M, ref \ e \rangle \to \langle M'[a := v], a \rangle}$$

 Interesting part: last rule requires some/any fresh label for new memory cell

Examples (II)

ullet A less trivial example: big step semantics for λ_{ref} .

• Interesting part: last rule constrains *N*-quantified name to be sufficiently fresh

Examples (III)

Another example: closure conversion

$$C[[x, \Gamma \vdash x]]e = \pi_1(e)$$

$$C[[y, \Gamma \vdash x]]e = C[[\Gamma \vdash x]](\pi_2(e)) \qquad (x \neq y)$$

$$C[[\Gamma \vdash t_1t_2]]e = \text{let } c = C[[\Gamma \vdash t_1]]e$$

$$\text{in } (\pi_1(c)) \ \langle C[[\Gamma \vdash t_2]]e, \pi_2(c) \rangle$$

$$C[[\Gamma \vdash \lambda x.t]]e = \langle \lambda y.C[[x, \Gamma \vdash t]]y, e \rangle \qquad (x, y \notin \Gamma)$$

Examples (III)

Another example: closure conversion

• Note: Functions are unwound to relations in α Prolog.

Nominal logic programming

Notation

Note that this includes *permutation terms & variables* which are not present in nominal logic proper.

Ground swapping

The result of applying a (ground) permutation Π to a (ground) term is:

$$\Pi \cdot \mathbf{a} = \Pi(\mathbf{a})$$

$$\Pi \cdot \langle \rangle = \langle \rangle$$

$$\Pi \cdot \langle t, u \rangle = \langle \Pi \cdot t, \Pi \cdot u \rangle$$

$$\Pi \cdot f(t) = f(\Pi \cdot t)$$

$$\Pi \cdot \langle \mathbf{b} \rangle t = \langle \Pi \cdot \mathbf{b} \rangle \Pi \cdot t$$

where

$$id(a) = a$$

$$\Pi \circ \Pi'(a) = \Pi(\Pi'(a))$$

$$(a b)(c) = \begin{cases} b & (a = c) \\ a & (b = c) \\ c & (a \neq c \neq b) \end{cases}$$

Ground freshness theory

Ground equational theory

$$\begin{array}{c} \overline{\mathbf{a}} \approx \overline{\mathbf{a}} \\ \overline{\langle \rangle} \approx \langle \rangle \\ \frac{t_1 \approx u_1 \quad t_2 \approx u_2}{\langle t_1, t_2 \rangle} \approx \langle u_1, u_2 \rangle \\ \frac{t \approx u}{f(t) \approx f(u)} \\ \frac{t \approx u}{\langle \mathbf{a} \rangle t \approx \langle \mathbf{a} \rangle u} \\ \end{array} \right\} \hspace{0.5cm} \text{Standard equational rules}$$

$$\begin{array}{c} \frac{t \approx u}{\langle \mathbf{a} \rangle t \approx \langle \mathbf{a} \rangle u} \\ \overline{\langle \mathbf{a} \rangle t \approx \langle \mathbf{b} \rangle u} \end{array}$$

$$\begin{array}{c} \alpha\text{-equivalence for abstractions} \end{array}$$

Standard equational rules

Nominal Horn clauses

A (nominal) Horn clause is a formula of the form

$$A:-B_1,\ldots,B_n$$

where A, B_1, \ldots, B_n are atomic formulas.

We interpret such a clause as the nominal logic formula

$$V \vec{a}. \forall \vec{X}. B_1 \wedge \cdots \wedge B_n \supset A$$

where $\vec{a} = FN(A, \vec{B})$ and $\vec{X} = FV(A, \vec{B})$.

Proof search

Proof search in α Prolog is *depth-first backchaining* just like in Prolog, except:

- 1. Both variables and atoms (names) are *freshened* when resolving against a clause.
- 2. UPG's nominal unification algorithm is used instead of ordinary syntactic unification.
- 3. In addition to substitutions, answers can contain freshness constraints.

Proof search: Correctness?

α Prolog proof search is **sound** with respect to nominal logic:

answers found by αProlog are logical consequences of the corresponding theory

The big question: Is α Prolog proof search complete?

can α Prolog find all answers (at least in principle)?

No.

Counterexample

Program clauses:

$$\mathsf{И}\mathsf{a}.p(\mathsf{a})$$

Goal:

Proof search fails because we freshen a in program clause p(a), so that the nominal unification step

$$p(\mathsf{a}') pprox p(\mathsf{a})$$

fails: logically equivalent but not equal nominal terms

The fly in the ointment

Problem: Equivariance

- In nominal logic, truth is preserved by name-swapping
- Two atomic formulas (or rewrite rules) can be *logically equivalent* but not *equal* as nominal terms.
- Example:

$$p(a) \iff p((a b) \cdot a) \approx p(b)$$
 but $p(a) \not\approx p(b)$

• For complete proof search need to *unify modulo equivariance*

Two reasonable reactions

- The hacker: Grr! Interesting problems! Must solve!
 - Unfortunately, full nominal and equivariant unification are \mathbf{NP} -hard and algorithmically nontrivial. (I found this out the hard way.)
- The theorist: Bleh! Hard problems! Must avoid!
 - Unfortunately, some interesting programs require equivariance.

Why is this hard?

- Let's take a little quiz.
- Satisfiable or not?

$$p((c b) \cdot X, X, (b a) \cdot Y, Y) \iff p(a, b, c, d)$$

• Satisfiable or not?

$$p((d c) \cdot X, X, (b a) \cdot Y, Y) \iff p(a, b, c, d)$$

Why is this hard?

- Let's take a little quiz.
- Satisfiable or not?

$$p((c b) \cdot X, X, (b a) \cdot Y, Y) \iff p(a, b, c, d)$$

No!

• Satisfiable or not?

$$p((d c) \cdot X, X, (b a) \cdot Y, Y) \iff p(a, b, c, d)$$

Yes: X = c, Y = a, swap (a d)(b c)

Nine cases to check

Another fun example

• Is this satisfiable?

$$X \# (((X Y) \cdot (X Y) \cdot X (X Y) \cdot (X Y) \cdot X) \cdot X (X X) \cdot Y) \cdot Y$$

Another fun example

• Is this satisfiable? No

$$X \# (((X Y) \cdot (X Y) \cdot X (X Y) \cdot (X Y) \cdot X) \cdot X (X X) \cdot Y) \cdot Y$$

 $\# ((X X) \cdot X (X X) \cdot Y) \cdot Y$
 $\# (X Y) \cdot Y$
 $\# X$

Avoiding equivariance

The idea

- Interpret equivariance *prescriptively*
- Everything will be fine as long as all the programs we write are *naturally equivariant*.
- Of course, checking this in general is undecidable (Rice's Theorem).
- Plan: find syntactic restriction of clauses for which α Prolog proof search is complete.

Obvious but doesn't work

- *Obviously*, if the atomic formulas in our programs never have free names then we're safe.
- Nope: program clause

$$p(\langle \mathsf{a} \rangle X, X).$$

has solution $p(\langle a \rangle a, b)$ but α Prolog doesn't find this answer.

Unsurprisingly, interaction between variables, names, and binding is subtle.

Short-cut

- Urban and I spent ages beating heads against walls on this so you don't have to.
- A restricted nominal Horn clause is of the form

$$orall \vec{X}.A:=$$
 Ma $ec{a}.\exists \vec{Y}.B_1,\ldots,B_n$

• RNHC's are inherently equivariant (induction on derivations), so α Prolog proof search is complete.

$$\frac{\text{Vi}\vec{\mathsf{a}}.\exists\vec{Y}.G(\vec{t})}{p(\vec{t})} \Longrightarrow \frac{\text{Vi}\vec{\mathsf{a}}.\exists\vec{Y}.G((b\ b')\cdot\vec{t})}{p((b\ b')\cdot\vec{t})}$$

Examples

• The λ -typing rule can be rewritten as $tc(G,lam(F),arr(T,U)):= \text{Via}.F \approx \langle \mathsf{a} \rangle E, tc([(\mathsf{a},T)|G],E,U).$

This is equivalent (in spirit) to the original.

So tc is safe.

- ullet On the other hand, $p(\langle a \rangle X, X)$ has no RNHC equivalent.
- ullet Neither (without major surgery) does the second clause of cconv:

$$cconv([y|G], var(x), E) = cconv(G, var(x), pi2(E)).$$

We need equivariant unification anyway.

- Urban and I developed a test for checking whether ordinary NHC's are safe. It is based on equivariant unification.
- Also, evidently equivariant unification is required for some interesting programs anyway.

• Hacker: Grr!

Equivariant unification

Idea

• Equivariant unification: relax ground name restrictions of UPG, add permutation variables & inverses

$$a, b, t, u ::= \langle \rangle \mid \langle t, u \rangle \mid f(t) \mid \langle a \rangle t \mid X \mid \Pi \cdot t \mid a$$

$$\Pi ::= (a \ b) \mid \text{id} \mid \Pi \circ \Pi' \mid \Pi^{-1} \mid P$$

$$C ::= t \approx u \mid a \# t$$

- t and u unify "up to a permutation" if $P \cdot t \approx u$ is satisfiable.
- NP-hard [C 04]

Our approach

- Phase I: Get rid of term symbols (unit, pair, functions, abstractions)
- Phase II: Get rid of permutation operations (id, inverse, composition, swapping)
- This leaves problems of the form $P \cdot a \approx b$, a # b only.
- Phase III: Solve remaining problems using *permutation graphs*

Our approach (I)

• First, get rid of unit, pair, function symbols and abstractions:

$$a, b, t, u ::= \langle \rangle \mid \langle t, u \rangle \mid f(t) \mid \langle a \rangle t \mid X \mid \Pi \cdot t \mid a$$

$$\Pi ::= (a \ b) \mid \operatorname{id} \mid \Pi \circ \Pi' \mid \Pi^{-1} \mid P$$

$$C ::= t \approx u \mid a \# t$$

Our approach (I)

• Reduction rules for equality in phase I:

$$\begin{array}{lll} (\approx?_1) & S, \langle\rangle \approx? \; \langle\rangle & \rightarrow_1 & S \\ (\approx?_\times) & S, \langle t_1, t_2\rangle \approx? \; \langle u_1, u_2\rangle & \rightarrow_1 & S, t_1 \approx? \; u_1, t_2 \approx? \; u_2 \\ (\approx?_f) & S, f(t) \approx? \; f(u) & \rightarrow_1 & S, t \approx? \; u \\ (\approx?_{abs}) & S, \langle a\rangle t \approx? \; \langle b\rangle u & \rightarrow_1 & \left\{ \begin{array}{c} S, a \approx? \; b, t \approx? \; u \\ \forall \; S, a \; \#? \; u, t \approx? \; (a \; b) \cdot u \end{array} \right\} \\ (\approx?_{var}) & S, \Pi \cdot X \approx? \; t & \rightarrow_1 & S[X := \Pi^{-1} \cdot t], X \approx? \; \Pi^{-1} \cdot t \\ & (\text{where } X \not\in FV(t), X \in FV(S)) \end{array}$$

- Note the 2-way choice point in rule for abstraction
- Otherwise, rules similar to UPG algorithm

Our approach (I)

Reduction rules for freshness in phase I:

$$(\#?_{1}) \qquad S, a \#? \langle \rangle \rightarrow_{1} S$$

$$(\#?_{\times}) \qquad S, a \#? \langle u_{1}, u_{2} \rangle \rightarrow_{1} S, a \#? u_{1}, a \#? u_{2}$$

$$(\#?_{f}) \qquad S, a \#? f(u) \rightarrow_{1} S, a \#? u$$

$$(\#?_{abs}) \qquad S, a \#? \langle b \rangle u \rightarrow_{1} \begin{cases} S, a \approx? b \\ \forall S, a \#? u \end{cases}$$

- Note the 2-way choice point in rule for abstraction
- Otherwise, rules similar to UPG algorithm

Our approach (II)

• Next, get rid of complex permutation terms:

$$a, b, t, u ::= \langle \rangle \mid \langle t, u \rangle \mid f(t) \mid \langle a \rangle t \mid X \mid \Pi \cdot t \mid a$$

$$\Pi ::= (a \ b) \mid \operatorname{id} \mid \Pi \circ \Pi' \mid \Pi^{-1} \mid P$$

$$C ::= t \approx u \mid a \# t$$

Our approach (II)

Reduction rules, phase II:

$$(id) S[id \cdot v] \to_2 S[v]$$

$$(inv) S[\Pi^{-1} \cdot v] \to_2 \exists X.S[X], \Pi \cdot X \approx v$$

$$(comp) S[\Pi \circ \Pi' \cdot v] \to_2 \exists X.S[\Pi \cdot X], \Pi' \cdot v \approx X)$$

$$(swap) S[(a \ a') \cdot v] \to_2 \begin{cases} S[a], a' \approx v \\ \lor S[a'], a \approx v \\ \lor \exists X.S[X], v \approx X, a \ \# X, a' \ \# X \end{cases}$$

Note the 3-way choice point in rule for swapping

Our approach (III)

• The remaining constraints involve only names, variables, and permutation variables.

$$a, b, t, u ::= \langle \rangle \mid \langle t, u \rangle \mid f(t) \mid \langle a \rangle t \mid X \mid \Pi \cdot t \mid a$$

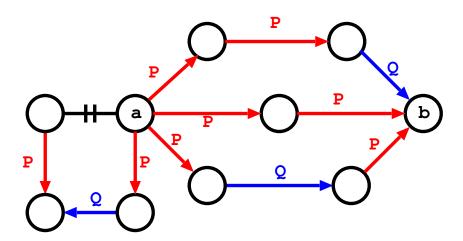
$$\Pi ::= (a \ b) \mid \operatorname{id} \mid \Pi \circ \Pi' \mid \Pi^{-1} \mid P$$

$$C ::= t \approx u \mid a \# t$$

- Problems of this form can be solved by graph reduction in poly. time.
- Idea: Build a graph with "freshness", and "permutation" edges; reduce using permutation laws

• Here's how to reduce a permutation graph corresponding to:

QPPa pprox b PQPa pprox b PQP^{-1} a # a

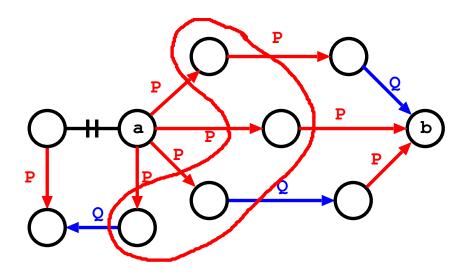


$$QPP$$
a $pprox$ b

$$PQP$$
a $pprox$ b

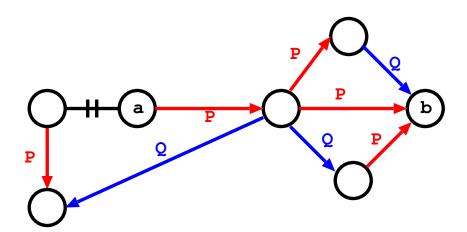
$$PP$$
a $pprox$ b

$$QPP$$
a $pprox$ b PQP a $pprox$ b PQP^{-1} a # a



• Here's how to reduce a permutation graph corresponding to:

QPPa pprox b PQPa pprox b PQP^{-1} a # a

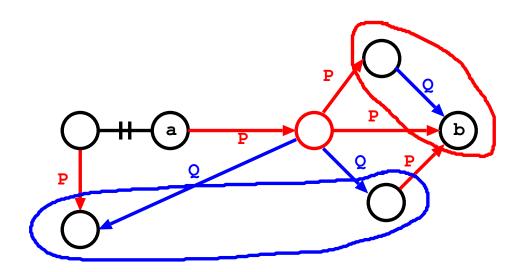


$$QPP$$
a $pprox$ b

$$PQP$$
a $pprox$ b

$$PP$$
a $pprox$ b

$$QPP$$
a $pprox$ b PQP a $pprox$ b PQP^{-1} a # a

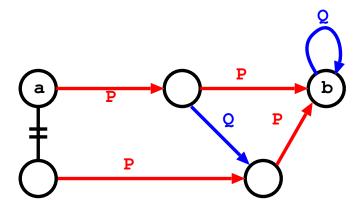


$$QPP$$
a $pprox$ b

$$PQP$$
a $pprox$ b

$$PP$$
a $pprox$ b

$$QPP$$
a $pprox$ b PQP a $pprox$ b PQP^{-1} a # a

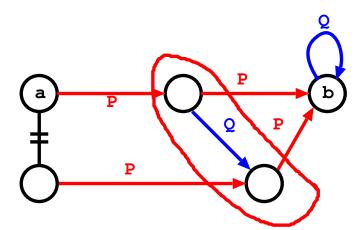


$$QPP$$
a $pprox$ b

$$PQP$$
a $pprox$ b

$$PP$$
a $pprox$ b

$$QPP$$
a $pprox$ b PQP a $pprox$ b PQP^{-1} a # a

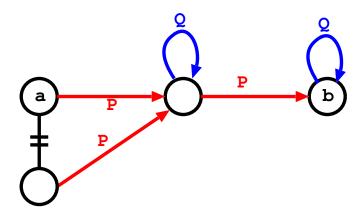


$$QPP$$
a $pprox$ b

$$PQP$$
a $pprox$ b

$$PP$$
a $pprox$ b

$$QPP$$
a $pprox$ b PQP a $pprox$ b PQP^{-1} a # a



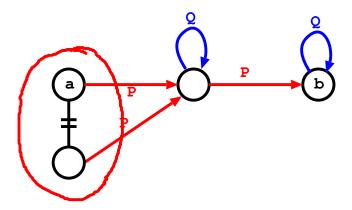
• Here's how to reduce a permutation graph corresponding to:

$$QPP$$
a $pprox$ b

$$PQP$$
a $pprox$ b

$$PP$$
a $pprox$ b

$$QPP$$
a $pprox$ b PQP a $pprox$ b PQP^{-1} a # a



• Unsatisfiable because $Q_a \# a$ and $Q_a \approx a$

Results

- Phase I (term reduction): **NP** time, finitary (possible improvement to poly. time, unitary.)
- Phase II (permutation reduction): NP time, finitary
- Phase III (graph reduction): P time, unitary.
- Overall: NP time, finitely many answers.

Aside: Equivariant matching

- Recall that nondeterminism comes from abstractions and swappings only.
- Based on this observation, developed a PTIME case of equivariant matching
- ullet Solves $P \cdot t pprox u$ when t,u are "swapping-free", that is, of the form

$$t,u ::= X \mid \langle \rangle \mid \langle t,u \rangle \mid f(t) \mid \langle a \rangle t \mid a$$

and u is ground.

Future work

- Where do we go from here?
- The hacker: Grr! Time for some hacking!
- The theorist: Is there a better-behaved fragment of nominal logic? (e.g., programs with no name variables)

Conclusion

- Nominal logic: interesting, powerful, but tricky to automate.
- Nominal logic programming is a first step in this direction
- Future: Nominal logic in theorem proving? Nominal logical framework?
- Lots of interesting stuff to do!

Determinizing phase I

Idea: Replace rules of the form

$$(\approx?_{abs}) \quad S, \langle a \rangle t \approx? \langle b \rangle u \quad \rightarrow_1 \quad \left\{ \begin{array}{c} S, a \approx? \ b, t \approx? \ u \\ \lor S, a \ \#? \ u, t \approx? \ (a \ b) \cdot u \end{array} \right\} \\ (\#?_{abs}) \quad S, a \ \#? \ \langle b \rangle u \quad \rightarrow_1 \quad \left\{ \begin{array}{c} S, a \approx? \ b, t \approx? \ u \\ \lor S, a \ \#? \ u, t \approx? \ (a \ b) \cdot u \end{array} \right\} \\ \lor S, a \ \#? \ u \end{array} \right\}$$

• with deterministic rules

$$(\approx?_{abs})$$
 $\langle a \rangle t \approx? \langle b \rangle u$ \rightarrow_1 $\text{Vic.}(a \text{ c}) \cdot t \approx? (b \text{ c}) \cdot u$ $(\#?_{abs})$ $a \#? \langle b \rangle u$ \rightarrow_1 $\text{Vic.}a \#? (b \text{ c}) \cdot u$

 Problem: more swappings so maybe more nondeterminism later