Logic Programming with Names and
Binding

James Cheney

Logic & Semantics Seminar

May 6, 2005

Prologue

Brief history

e History: My involvement in this work started at Cambridge
almost exactly 2 years and one dissertation ago.

e [hanks!

aProlog

e oProlog is a logic programming language based on Pitts’
nominal logic

e and using Urban, Pitts, and Gabbay’s nominal unification
algorithm

e FreshML : ML :: aProlog : Prolog (4 types)

e I am going to assume that the audience already has some
familiarity with all of the above.

Examples (I)

e A (very tired) example: typechecking.
z:Tel te:T—-U THf:T (xgll) TMax:Tre:U

[(Fx:T [Fe f:U [FXxe: T — U
tc(G,var(X),T) :— mem((X,T),G).
tc(G,app(E,F),U) :— tc(G,E,arr(T,U)), tc(G,F,T).

tc(G,lam(x\E) ,arr(T,U)) :- x # G, tc([(x,T)IG],E,U).

Examples (II)

e A less trivial example: big step semantics for Aref.

(a S Lab) <M7 61> — <M’,CL> <M/7 62> — <M”7U>
(M, a) — (M, a) (M, ey :=ez) — (M"[a =], ())

(M,e) — (M',a) (M,e) — (M',v) (a & dom(M"))
(M,le) — (M', M'(a)) (M, ref) — (M'[a = v],q)

e Interesting part: last rule requires some/any fresh label for
new memory cell

Examples (II)

e A less trivial example: big step semantics for Aref.

(M,1ab(A)) ‘eval® (M,lab(Ad)).

(M,assign(E1,E2)) ‘eval® (M3,unit) :-— (M,E1) ‘eval‘ (M1,lab(Ad)),
(M1, E2) ‘eval‘ (M2,V),
update ((A,V) ,M2,M3).

(M,deref (E)) ‘evalt (M’,V) :— (M,E) ‘eval® (M’,lab(A)),
mem((A,V) ,M’).

(M,ref(E)) ‘eval® ([(a,V)]|M1],lab(a)) :- (M,E) ‘eval‘ ,(M1,V),
a#M1.

e Interesting part: last rule constrains I-quantified name to be
sufficiently fresh

Examples (III)

e Another example: closure conversion

Cllz, T F z]e
Clly, I = x]e
CIIT F t1to]le

m1(e)

Clr = z](m2(e)) (z # y)
let ¢ = C[I+t1]e

in (m1(c)) (C[I" - t2]le, m2(c))

Ay.Cllx, T F t]ly, e) (x,y ¢ T)

CIIT + Xz.t]e

Examples (III)

e Another example: closure conversion

cconv([x|G] ,var(x),E)
cconv([yl|G],var(x) ,E)
cconv(G,app(T1,T2) ,E)
= let(cconv(G,T1,E),c\
app(pil(var(c)),
pair(cconv(G,T2,E) ,pi2(var(c))))).
cconv(G,lam(x\T) ,E)
= pair(Qlam(y\cconv([x|G],T,var(y))) ,E)
1= X#G,y#G.

pil(E).
cconv(G,var(x),pi2(E)).

e Note: Functions are unwound to relations in aProlog.

Nominal logic programming

10

Notation

a,b € A Atoms/Names
f,g € FnSym Term symbols
X, Y € Var Variables
a,b,t,u = | {tu | f(t)|X First-order terms
| (a)t|M-t|a Nominal terms
M = (ab)]id| Mol | N~ | P Permutations
C = txul|a#t Equality, freshness

Note that this includes permutation terms & variables which are
not present in nominal logic proper.

11

Ground swapping

The result of applying a (ground) permutation N to a (ground)
term is:

M-a = TI(a)
-0 =0
M- {t,u)y = (MN-¢,M-u)
n.fi@) = fn-t)
M-(b)t = (M-b)yM-t

where
Mo M'(a) ; n(n’(a))

b (a=rc¢)
(@ab)(c) = ¢ a (b=¢)
c (a#c#Db)

12

Ground freshness theory

(a 7= b)
a#b Different names fresh
a # () Anything fresh for unit
aFt
a 7= f(t) Freshness ignores function symbols
aFEt a#Hu
a # (t,u) Freshness ignores pairs
a # (a)t Fresh if bound
(a#=b) a#t

a # (b)t Fresh if fresh for body

13

Ground equational theory

(t1,t2) = (u1,u2) Standard equational rules

(a)t =~ (b) a-equivalence for abstractions

14

Nominal Horn clauses

A (nominal) Horn clause is a formula of the form

where A, B1,..., By are atomic formulas.

We interpret such a clause as the nominal logic formula
NaVX.B{A---ABnDA
where 3= FN(A, B) and X = FV (A, B).

15

Proof search

Proof search in aProlog is depth-first backchaining just like in
Prolog, except:

1. Both variables and atoms (names) are freshened when re-
solving against a clause.

2. UPG's nominal unification algorithm is used instead of ordi-
nary syntactic unification.

3. In addition to substitutions, answers can contain freshness
constraints.

16

Proof search: Correctness?

aProlog proof search is sound with respect
to nominal logic:

answers found by aProlog are logical consequences of the corre-
sponding theory

The big question: Is aProlog proof search
complete?

can «Prolog find all answers (at least in principle)?

17

NoO.

18

Counterexample

Program clauses:

Na.p(a)
Goal:

p(a)

Proof search fails because we freshen a in program clause p(a),
so that the nominal unification step

p(a’) = p(a)

fails: logically equivalent but not equal nominal terms

19

The fly in the ointment

20

Problem: Equivariance

e In nominal logic, truth is preserved by name-swapping

e Two atomic formulas (or rewrite rules) can be logically equiv-
alent but not equal as nominal terms.

e Example:

p(a) <= p((ab)-a)~=p(b) but p(a)#p(b)

e For complete proof search need to unify modulo equivariance

21

TwO reasonable reactions

e T he hacker: Grr! Interesting problems! Must solvel

— Unfortunately, full nominal and equivariant unification are
NP-hard and algorithmically nontrivial. (I found this out
the hard way.)

e [he theorist: Bleh! Hard problems! Must avoid!
— Unfortunately, some interesting programs require equiv-

ariance.

22

Why is this hard?

e L et's take a little quiz.

e Satisfiable or not?

p((cb)- X, X,(ba)-Y,Y) «<— p(a,b,c,d)

e Satisfiable or not?

p((de)-X,X,(ba)-Y,Y) «<— p(a,b,c,d)

23

Why is this hard?

e L et's take a little quiz.

e Satisfiable or not?

p((cb)- X, X,(ba)-Y,Y) «<— p(a,b,c,d)
No!

e Satisfiable or not?

p((dc)-X,X,(ba)- YY) < p(a,b,c,d)
Yes: X =c,Y = a, swap (a d)(b c)

Nine cases to check

24

Another fun example

e Is this satisfiable?

X # (XY XY XXY)- (XY)-X)- X (XX):Y)Y

25

Another fun example

e Is this satisfiable? No

X # (XY XY XXY)- (XY)-X)- X (XX):Y)Y
(X X)- X (X X)-Y) Y
(XY) Y
X

26

Avoiding equivariance

27

T he 1dea

e Interpret equivariance prescriptively

e Everything will be fine as long as all the programs we write
are naturally equivariant.

e Of course, checking this in general is undecidable (Rice’'s
Theorem).

e Plan: find syntactic restriction of clauses for which aProlog
proof search is complete.

28

Obvious but doesn’t work

e Obviously, if the atomic formulas in our programs never have
free names then we're safe.

e Nope: program clause

p((a) X, X).

has solution p({(a)a,b) but aProlog doesn’'t find this answer.

e Unsurprisingly, interaction between variables, names, and bind-
ing is subtle.

29

Short-cut

e Urban and I spent ages beating heads against walls on this
SO you don’t have to.

e A restricted nominal Horn clause is of the form

VX.A:— WN3.3Y.Bq,...,Bn

e RNHC's are inherently equivariant (induction on derivations),
so aProlog proof search is complete.

N3.3Y .G (%) N3.3Y.G((b V) - 1)
p(®) = p((b¥)-1)

30

Examples

e [he A\-typing rule can be rewritten as

te(G,lam(F),arr(T,U)) :(— Na.F = (a)E, tc([(a, T)|G], E,U).
This is equivalent (in spirit) to the original.

So tc is safe.
e On the other hand, p({a)X, X) has no RNHC equivalent.

e Neither (without major surgery) does the second clause of
CCONv.

cconv(ly|G], var(x), E) = cconv(G,var(x),pi2(FE)).

31

We need equivariant unification anyway.

e Urban and I developed a test for checking whether ordinary
NHC's are safe. It is based on equivariant unification.

e AIlso, evidently equivariant unification is required for some
interesting programs anyway.

e Hacker: Grrl

32

Equivariant unification

33

Idea

e Equivariant unification: relax ground name restrictions of
UPG, add permutation variables & inverses

a,b,t,u = ()| (Gu) | f(E) [(@)t | X [N-t]a
N = (ab)|id| Mo’ || P
C — %’U,|CL#t

e t and u unify “up to a permutation” if P-t ~ u is satisfiable.

e NP-hard [C 04]

34

Our approach

e Phase I. Get rid of term symbols (unit, pair, functions, ab-
stractions)

e Phase II: Get rid of permutation operations (id, inverse, com-
position, swapping)

e [his leaves problems of the form P-a b, a # b only.

e Phaselll: Solve remaining problems using permutation graphs

35

Our approach (I)

e First, get rid of unit, pair, function symbols and abstractions:

a,bt,u = ()| {Ew | fE)[{a)|X[M-t]a
N = (abd)|id|Non’ NP
C = tx=u|a#t

36

Our approach (I)

e Reduction rules for equality in phase I:

(=71) S,() =7() —1 S
(=?x) S, (t1,t2) =7 (u1,up) —1 S,t1 =?uy,tor =7 up
(~7}) S F(t) ~7 f(u) —q1 S, tx7u
S.arx7?7btx7u
z? %? 9)
(A% abs) S, (a)t (byu —1 { VS,a#?u,t=?(ab)- u }
(~?var) SM-X~r7t —1 S[X:=nN"1.¢,XxX~=?2n"1.¢

(where X € FV(t),X € FV(S))

e Note the 2-way choice point in rule for abstraction

e Otherwise, rules similar to UPG algorithm
37

Our approach (I)

e Reduction rules for freshness in phase I:

(#71) S,a#?() —1 S
(#7x) S,a#7 (ur,up) —1 S,a#7u,a #7 up
(#7¢) S,a #7?7 f(u) —1 S,a#?u

S.a=?b
(F£7?abs) S,a #7? (b)u — { y éfba 47 u }

e Note the 2-way choice point in rule for abstraction

e Otherwise, rules similar to UPG algorithm

38

Our approach (II)

e Next, get rid of complex permutation terms:

a,bt,u = ()| {Ew) [f) [()| X[M-t]a
N = (ab)|id|Nol || P
C = tx=u|a#t

39

Our approach (II)

e Reduction rules, phase II:

(id) Slid-v] —o S[v]

(inv) SMN—1.v] —5 3IX.8[X],N-X ~v

(comp) S[MNol-v] —o IX.S[MN-X],MN-v=xX)

Sla],a’ ~ v

(swap) S[(a a')-v] —o Vv S[d],a =~ v
VIX.S[X],vre X,a# X,a # X

e Note the 3-way choice point in rule for swapping

40

Our approach (III)

e [he remaining constraints involve only names, variables, and
permutation variables.

a,b,t,u = () [{tu) [f() [(@)t [X [M-t]a
N = (ab)|id|Mon | 1P
C = tx=u|a#t

e Problems of this form can be solved by graph reduction in
poly. time.

e Idea: Build a graph with “freshness’, and “permutation”
edges; reduce using permutation laws

41

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

42

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

43

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

44

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

:

o)
10

45

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

ol

46

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

47

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

48

An example

e Here's how to reduce a permutation graph corresponding to:

QPPa~ b PQPa =~ b PPa=~b PQP 1a # a

e Unsatisfiable because (Qa # a and Qa =~ a

49

Results

e Phase I (term reduction): NP time, finitary (possible im-
provement to poly. time, unitary.)

e Phase II (permutation reduction): NP time, finitary

e Phase III (graph reduction): P time, unitary.

e Overall: NP time, finitely many answers.

50

Aside: Equivariant matching

e Recall that nondeterminism comes from abstractions and
swappings only.

e Based on this observation, developed a PTIME case of equiv-
ariant matching

e Solves P-t =~ u when t,u are ‘“swapping-free”, that is, of the
form

tuwi=X| ([{Eu) | f(#)]@)t]a

and wu is ground.

51

Future work

e \Where do we go from here?

e [he hacker: Grr! Time for some hacking!

e T he theorist: Is there a better-behaved fragment of nominal
logic? (e.g., programs with no name variables)

52

Conclusion

e Nominal logic: interesting, powerful, but tricky to automate.

e Nominal logic programming is a first step in this direction

e Future: Nominal logic in theorem proving? Nominal logical
framework?

e Lots of interesting stuff to do!

53

Determinizing phase 1

e Idea: Replace rules of the form

(S a~?btx?u
(R7aps) S (@)t =7 (b)u —1 ¥ VS,a#?u,t=?(ab)- -u
S,ax?b
(F£7 abs) Sia#7 (hyu =1 1 V Saa 7 u }

e With deterministic rules

(?ps) (a)t=?{(b)u —1 WNc(ac)-t=?(bc)-u
(#7%ws) a#?bu —1 WNca#?(bc)-u

e Problem: more swappings so maybe more nondeterminism
later

54

